

What do we know about Underwater Hockey?

Mike Davis Honorary Senior Lecturer, Department of Anaesthesiology

NEW ZEALAND

Te Whare Wananga o Tamaki Makaurau

Underwater hockey (UWH) (and underwater rugby - UWR)

UWH

- Mid 1950s, UK & France
- Over 40 countries
- Schools to masters (12–73)
- CMAS-administered
- 25 x 15 m, 2–3 m depth

UWR

- 1961, northern Europe
- Over 20 countries
- 22 x 12 m, 3.5–5 m depth

UWH–1963 (UK); UWR–1974 (Sweden) Stopped in 2010 – ChCh quake!

Breath-hold diving Mammalian adaptations

"For an air-breathing mammal to spend 4–8 months at sea, 90% of this time submerged, one cannot fail to be impressed."

(Sheila Thornton, Otago Univ, on the elephant seal. Undersea Hyperb Med. 2004; 31: 81-95.)

3 main mechanisms:

- Enhanced O₂ stores
- Buffering products of metabolism
- Circulatory reduction/redistribution
- These responses differ from terrestrial animals <u>quantitatively</u> rather than qualitatively
- Metabolic down-regulation at cellular level postulated complex cellular biochemical issue

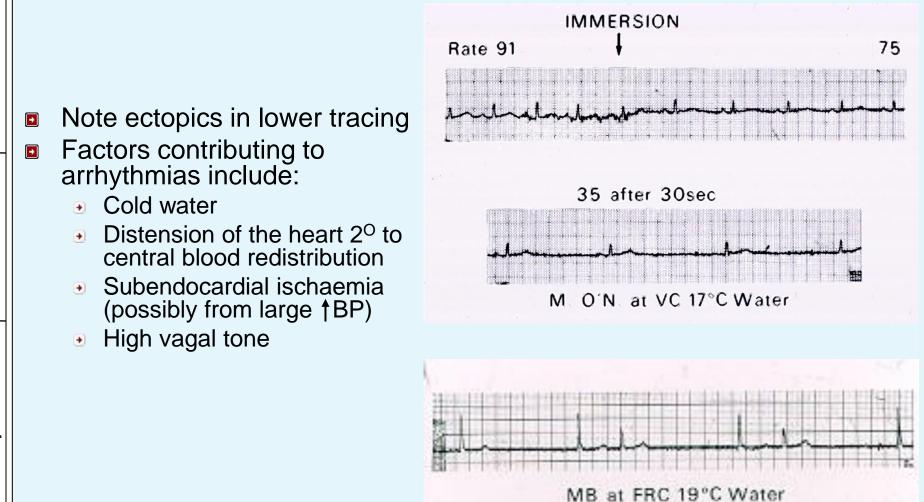
Breath-hold diving Apnoea time

21

kland | N

Voluntary BH has two phases:

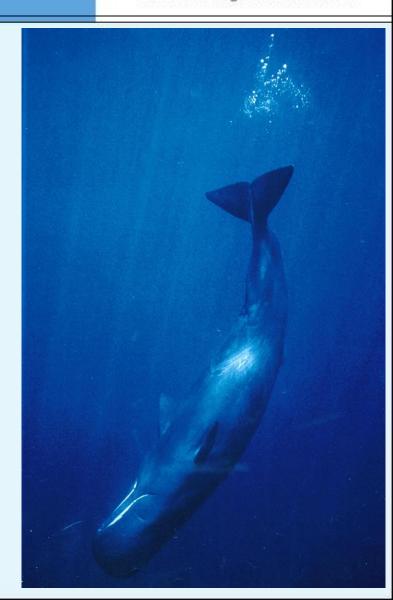
the 'easy-going' phase ends at 'physiological' breaking point (involuntary inspiratory muscle contractions start) BH terminated at the 'conventional' breaking point


Apnoea time is dependent on:

- Metabolic rate
- CO₂ storage capacity
 - Hyperventilation
- O_2 stores big lungs primarily (+ spleen)
- Physiological/psychological tolerance to hypercapnia and hypoxia

Face immersion – the 'Diving Reflex'

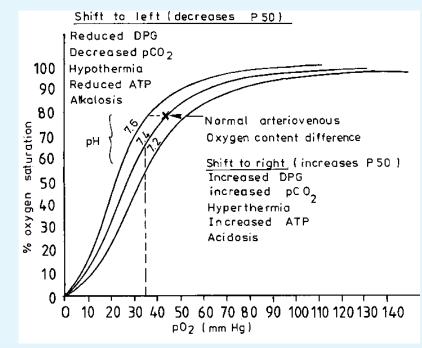
Sinus Rate 26 per mim


Breath-hold diving 'Diving response'

The 'diving response' in man:

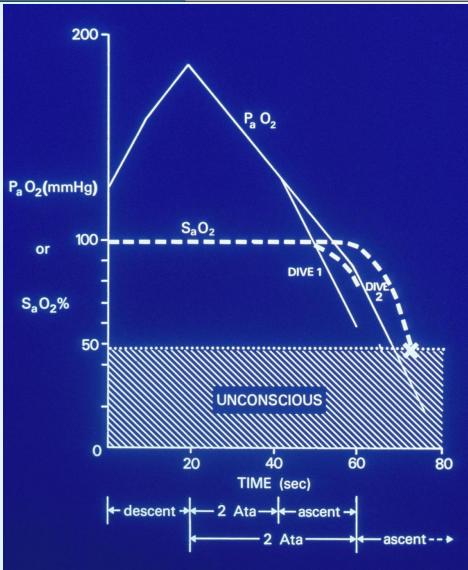
- Heart rate
- Cardiac output
- Peripheral V/C
- BP (pronounced in man)
- Brain & heart blood flow
- Haematocrit (↓spleen)
- Anaerobic metabolism

Enhanced by cold water


Ascent hypoxia

Breath-hold diving Apnoeic (ascent) Hypoxia

- 'Ascent hypoxia' is usually explained in terms of changes in PO₂ & PCO₂
- OK for CO₂ as ventilatory drive determined by CSF [PCO₂]
- Inadequate for O₂ due to the non-linearity of Hb-O₂ dissociation curve


Breath-hold diving Ascent hypoxia

PaO₂ and SaO₂ changes during 2 hypothetical BH dives to 9 m, one 20 sec longer than the other

- High initial P_aO₂ from pre-dive hyperventilation
- Steep fall in SaO₂ towards the end of the longer dive (non-linear Hb-O₂ dissociation curve)
- Transition to dangerous hypoxia during ascent can be very rapid;
 - N.B. LoC can occur without descent!

(redrawn from data of Craig & Harley, 1968)

→

"Shallow-water blackout"

"If you're worried about shallow-water blackouts [in UWH], you might as well eliminate water polo, swimming and synchronized swimming because every one of those other sports have had shallow-water blackouts."

(Dr John Meisenheimer, Florida)

New Zealand

21 June 2023

Underwater Hockey

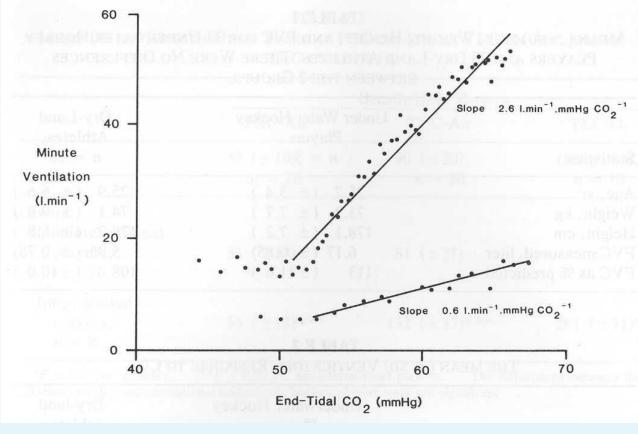
THE UNIVERSITY OF AUCKLAND NEW ZEALAND Te Whare Wananga o Tamaki Makaurau

Underwater hockey equipment

THE UNIVERSITY OF AUCKLAND NEW ZEALAND Te Whare Wananga o Tamaki Makaurau

Facemask (low profile, goggle type)

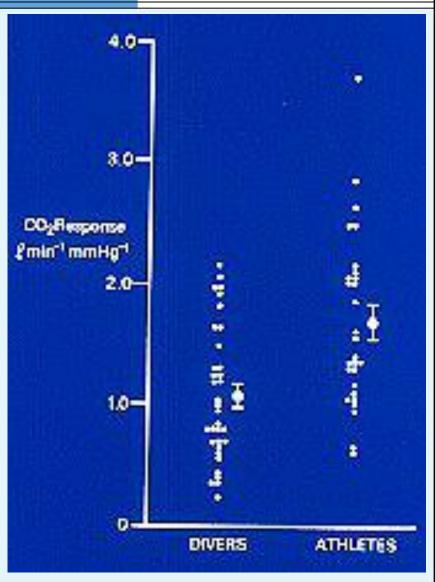
- Snorkel (short, wide, rigid)
- Water polo hat (ear protection cups)
- Glove (similar to cricket glove)
- Stick (hard plastic; black & white)
- Fins (large, flexible not rigid)
- Puck (1.5 kg; lead alloy, plastic-coated)
- Swimming togs!


21 June 2023

New Zealand

UWH players CO₂ response

A 'normal' CO₂ response curve (upper curve) and that of an international UWH player (lower curve); not all BH divers have such low responses.


(Davis et al, 1987)

UWH players CO₂ response

 UWH players vs. athletes (P < 0.05)
 1.08 ± 0.55 vs. 1.68 ± 0.72 L.min⁻¹.mmHg CO₂⁻¹ (Davis et al, 1987)

- Later unpublished work confirmed this difference & UWH players and athletes had lower responses than non-athletes (typical mean 2.5-3.0 L.min⁻¹.mmHg CO₂⁻¹)
- Other studies confirm these observations
 - No data on hypoxia responses in divers at rest or during exercise ex. at 4 Ata (our attempts were not satisfactory)

•

UWH players Apnoea times

	FRC-Air	Breath-Hold Time, s TLC-Air	
Athletes	$37 (\pm 10),$ n = 20	90 (±20), n = 20	$\frac{\text{TLC-O}_2}{185 \ (\pm 66),}$ $n = 10$
Divers Noninternational players, n = 26	38 (±13)	81 (±21)	• · · ·
International players, $n = 8$	55 (±18)*.**	132 (±37)*.**	261 (±71)*

*P < 0.01 vs. athletes. **P < 0.02 vs. noninternational players. The differences between the athletes and the noninternational underwater hockey players were not significant.

(Davis et al, 1987 – still the largest data set comparing BH divers with athletes)

June 2023

21

New Zealand

Factors influencing apnoea times

Mechanical

- Big Lungs clear correlation
- Lung packing
- Physiological
 - Large spleen clear correlation
 - Tolerance to hypercapnia (not altered by repetitive apnoeas)
 - Tolerance to hypoxia poorly studied
 - Blood volume shift to lungs with immersion
- Psychological
 - Motivation/relaxation
- Genetics
- Training
 - Increasing ♥O_{2max}/repetitive apnoeas (CO₂ tables) ?role

Breath-hold diving Apnoea time

- BH time prolonged short term by BH series with short surface intervals (likely due in part to splenic contraction)
- Claims made for static apnoea training:
 - Boosts CO₂ tolerance
 - Helps to 'deal' with hypoxia !
 - Coping with diaphragm contractions
 - Helps to suppress urge to breathe
 - Builds mental fortitude and discipline.
- Motivation probably the strongest factor

Respiratory, cardiovascular & metabolic responses

- AS: HR 192 ± 8.7 b.min⁻¹ interspersed with bradycardia (89 ± 28.5)
- AS: Intermittent BH during dry-land exercise at 65% VO_{2max} induces hyperventilation, ↓ PCO₂ & ↑ [Lactate]
- \uparrow [Lactate] in BH disciplines & AS:
 - highest in 'constant weight, no fins'
 - least in AS ?shorter apnoeic times with intermittent breathing
 - No data in UWH players

Laboratory: (elite players vs. matched athletes; male/female)

- BH times; face immersion bradycardia
- Hypoxia & CO₂ responses at rest/exercise (fixed work rate)
- Training: Intensive/repetitive apnoea/respiratory muscle

During play:

- Patterns of BH
 - Lengths (5 sec 1+ min?)
 - Surface intervals (relation to 'fitness'/ VO_{2max})
 - Total BH duration in game
 - *?Differences between playing positions*
- HR & O_{2sat} changes
- PCO₂ & [Lactate] changes (balance of aerobic/anaerobic exercise)

Underwater hockey injuries

- Hypoxic LoC (training riskier than play)
- Facial trauma: espec. nose**, teeth**, lips**
- Sinus & middle ear** barotrauma
- Eye conjunctival haem, (?visual)
- Shoulder dislocation, "swimmer's shoulder"**, elbow, wrist
- Hand fractures** (thumb, index finger), dislocations
- Rib fractures**, pneumothorax
- Haemoptysis (pulm. cap. Stress 1 case)
- Minor cuts & bruises**
- External ear & skin infections, athlete's foot**
- 3 MIs, all in men with known heart conditions

** personal injuries

The University of Auckland

So Why play UWH?

UWH maintains water skills

- Sport-specific exercise for scuba diving fitness & safety
- Played at all ages

(ChCh club 12-73 y.o.)

- Team sport
- Wide range of skills involved
- And ... it's fun!

